Universität Wien

136013 UE Visualization of humanities data (2025S)

Prüfungsimmanente Lehrveranstaltung

Di 03.06. 11:30-13:00 Ort in u:find Details

An/Abmeldung

Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").

Details

max. 25 Teilnehmer*innen
Sprache: Englisch

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

Dienstagstermine: Seminarraum 7, Währinger Straße 29 1.OG
Freitagstermine: Hörsaal 3, Währinger Straße 29 3.OG
Blocktermin am Di, 24.06.2025 09:45-13:00: Seminarraum 3, Währinger Straße 29 1.UG

Alle Terminangaben sind immer auch hier abrufbar: https://ufind.univie.ac.at/de/course.html?lv=053622&semester=2025S

  • Dienstag 04.03. 11:30 - 13:00 Ort in u:find Details
  • Dienstag 11.03. 11:30 - 13:00 Ort in u:find Details
  • Freitag 14.03. 11:30 - 13:00 Ort in u:find Details
  • Dienstag 18.03. 11:30 - 13:00 Ort in u:find Details
  • Dienstag 25.03. 11:30 - 13:00 Ort in u:find Details
  • Freitag 28.03. 11:30 - 13:00 Ort in u:find Details
  • Dienstag 01.04. 11:30 - 13:00 Ort in u:find Details
  • Dienstag 08.04. 11:30 - 13:00 Ort in u:find Details
  • Dienstag 29.04. 11:30 - 13:00 Ort in u:find Details
  • Dienstag 06.05. 11:30 - 13:00 Ort in u:find Details
  • Freitag 09.05. 11:30 - 13:00 Ort in u:find Details
  • Dienstag 13.05. 11:30 - 13:00 Ort in u:find Details
  • Freitag 16.05. 11:30 - 13:00 Ort in u:find Details
  • Dienstag 20.05. 11:30 - 13:00 Ort in u:find Details
  • Freitag 23.05. 11:30 - 13:00 Ort in u:find Details
  • Dienstag 27.05. 11:30 - 13:00 Ort in u:find Details
  • Freitag 06.06. 11:30 - 13:00 Ort in u:find Details
  • Dienstag 10.06. 11:30 - 13:00 Ort in u:find Details
  • Freitag 13.06. 11:30 - 13:00 Ort in u:find Details
  • Dienstag 17.06. 11:30 - 13:00 Ort in u:find Details
  • Dienstag 24.06. 09:45 - 13:00 Ort in u:find Details
  • Freitag 27.06. 11:30 - 13:00 Ort in u:find Details

Information

Ziele, Inhalte und Methode der Lehrveranstaltung

Computer-based visualization systems provide visual representations of datasets intended to help people carry out some task more effectively. These datasets can come from very diverse sources, such as scientific experiments, simulations, medical scanners, commercial databases, financial transactions, health records, social networks and the like. In this course we deal with effective visual mappings as well as interaction principles for various data, understand perceptual and cognitive aspects of visual representations and learn how to evaluate visualization systems.

Topics covered will include (but are not limited to):

* Introduction and historical remarks
* Visual design principles and the visualization pipeline
* Design studies
* Data acquisition and representation
* Basic visual mapping concepts (marks + channels)
* Human visual perception + Color
* Visual mappings for tables and multi/high-dimensional data
* Visual mappings for networks, graphs and trees
* Visual mappings and algorithms for 2D+3D scalar, vector, and tensor fields
* Visual mappings for text data
* Principles of multiple coordinated views
* Data interaction principles including Brushing+Linking, Navigation+Zoom , Focus+context
* Principles of Evaluation of visual analysis systems
* some selected advanced topic

Course-specific goals -- students can:
* represent and interact with various data visually
* evaluate visual depictions of data and possible find improved presentations
* assist users in visual data analysis
* use different visual analysis tools, like Tableau

General goals -- students gain:
* insight into a new discipline and extend their scientific horizons
* an appreciation for the interplay of mathematical analysis and user-centered design

Art der Leistungskontrolle und erlaubte Hilfsmittel

handing in homework, 5x assignments
presentation
participation
test

Mindestanforderungen und Beurteilungsmaßstab

There is no formal prerequisite.

The grading scale for the course will be:
1: at least 87.5%
2: at least 75.0%
3: at least 62.5%
4: at least 50.0%

In order to pass the course successfully, you will need to reach a minimum of 50% on all assignments combined, 25% of the points on the last assignment, as well as a minimum of 40% on the test. Additionally, the presentation of your last assignment is a mandatory requirement for the
successful completion of the course.

Prüfungsstoff

applied exercises and tasks
readings

Literatur

T. Munzner: Visualization Analysis & Design: Abstractions, Principles, and Methods, CRC Press, 2014

various papers as presented on the course page

Zuordnung im Vorlesungsverzeichnis

DH-S II
S-DH Cluster III

Letzte Änderung: Do 06.03.2025 12:14
OSZAR »